Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3914714.v1

ABSTRACT

This retrospective study on COVID-19's four waves in Bogotá, Colombia, scrutinises 1.77 million cases from March 2020 to April 2022, revealing significant shifts in both transmissibility and severity. The study highlights dynamic changes in the instantaneous reproduction number (Rt), with the highest values (> 2.5) corresponding to the ancestral and Omicron variants. There was a notable 88% decrease in the Case Fatality Ratio (CFR) from the first to the fourth wave, emphasising changing severity levels. The third wave, marked by the Mu variant, saw the highest case and death counts, yet paradoxically showed a decrease in CFR and an increase in the hospitalisation fatality ratio. Conversely, the fourth wave, dominated by Omicron, had the lowest severity despite higher hospitalisation rates in children. Additionally, the study records a consistent reduction in average hospital and ICU stay durations, from 10.84 days to 7.85 days and from 16.2 days to 12.4 days respectively, across the waves. These findings underscore the importance of ongoing epidemiological surveillance and adaptable public health strategies in lower-middle-income regions like Bogotá, deepening our understanding of COVID-19's impact in Latin America.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.04.22283691

ABSTRACT

Not all COVID-19 deaths are officially reported and, particularly in low-income and humanitarian settings the magnitude of such reporting gaps remain sparsely characterised. Alternative data sources, including burial site worker reports, satellite imagery of cemeteries and social-media-conducted surveys of infection, may offer solutions. By merging these data with independently conducted, representative serological studies within a mathematical modelling framework, we aim to better understand the range of under-reporting using the example of three major cities: Addis Ababa (Ethiopia), Aden (Yemen) and Khartoum (Sudan) during 2020. We estimate 69% - 100%, 0.8% - 8.0% and 3.0% - 6.0% of COVID-19 deaths were reported in these three settings, respectively. In future epidemics, and in settings where vital registrations systems are absent or limited, using multiple alternative data sources could provide critically-needed, improved estimates of epidemic impact. However, ultimately, functioning vital registration systems are needed to ensure that, in contrast to COVID-19, the impact of future pandemics or other drivers of mortality are reported and understood worldwide.


Subject(s)
COVID-19 , Death
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2225159.v1

ABSTRACT

The COVID-19 pandemic has caused over 6.4 million registered deaths to date, and has had a profound impact on economic activity. Here, we study the interaction of transmission, mortality, and the economy during the SARS-CoV-2 pandemic from January 2020 to December 2022 across 25 European countries. We adopt a Bayesian vector autoregressive model with both fixed and random effects. We find that increases in disease transmission intensity decreases Gross domestic product (GDP) and increases daily excess deaths, with a longer lasting impact on excess deaths in comparison to GDP, which recovers more rapidly. Broadly, our results reinforce the intuitive phenomenon that significant economic activity arises from diverse person-to-person interactions. We report on the effectiveness of non-pharmaceutical interventions (NPIs) on transmission intensity, excess deaths and changes in GDP, and resulting implications for policy makers. Our results highlight a complex cost-benefit trade off from individual NPIs. For example, banning international travel increases GDP however reduces excess deaths. We consider country random effects and their associations with excess changes in GDP and excess deaths. For example, more developed countries in Europe typically had more cautious approaches to the COVID-19 pandemic, prioritising healthcare and excess deaths over economic performance. Long term economic impairments are not fully captured by our model, as well as long term disease effects (Long Covid). Our results highlight that the impact of disease on a country is complex and multifaceted, and simple heuristic conclusions to extract the best outcome from the economy and disease burden are challenging.


Subject(s)
COVID-19 , Death
4.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2211.00054v2

ABSTRACT

The COVID-19 pandemic has caused over 6.4 million registered deaths to date and has had a profound impact on economic activity. Here, we study the interaction of transmission, mortality, and the economy during the SARS-CoV-2 pandemic from January 2020 to December 2022 across 25 European countries. We adopt a Bayesian Mixed Effects model with auto-regressive terms. We find that increases in disease transmission intensity decreases Gross domestic product (GDP) and increases daily excess deaths, with a longer lasting impact on excess deaths in comparison to GDP, which recovers more rapidly. Broadly, our results reinforce the intuitive phenomenon that significant economic activity arises from diverse person-to-person interactions. We report on the effectiveness of non-pharmaceutical interventions (NPIs) on transmission intensity, excess deaths, and changes in GDP, and resulting implications for policy makers. Our results highlight a complex cost-benefit trade off from individual NPIs. For example, banning international travel increases GDP and reduces excess deaths. We consider country random effects and their associations with excess changes in GDP and excess deaths. For example, more developed countries in Europe typically had more cautious approaches to the COVID-19 pandemic, prioritising healthcare, and excess deaths over economic performance. Long term economic impairments are not fully captured by our model, as well as long term disease effects (Long Covid). Our results highlight that the impact of disease on a country is complex and multifaceted, and simple heuristic conclusions to extract the best outcome from the economy and disease burden are challenging.


Subject(s)
COVID-19 , Death
5.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2210.14221v1

ABSTRACT

Uncertainty can be classified as either aleatoric (intrinsic randomness) or epistemic (imperfect knowledge of parameters). Majority of frameworks assessing infectious disease risk consider only epistemic uncertainty. We only ever observe a single epidemic, and therefore cannot empirically determine aleatoric uncertainty. Here, for the first time, we characterise both epistemic and aleatoric uncertainty using a time-varying general branching processes. Our framework explicitly decomposes aleatoric variance into mechanistic components, quantifying the contribution to uncertainty produced by each factor in the epidemic process, and how these contributions vary over time. The aleatoric variance of an outbreak is itself a renewal equation where past variance affects future variance. Surprisingly, superspreading is not necessary for substantial uncertainty, and profound variation in outbreak size can occur even without overdispersion in the distribution of the number of secondary infections. Aleatoric forecasting uncertainty grows dynamically and rapidly, and so forecasting using only epistemic uncertainty is a significant underestimate. Failure to account for aleatoric uncertainty will ensure that policymakers are misled about the substantially higher true extent of potential risk. We demonstrate our method, and the extent to which potential risk is underestimated, using two historical examples: the 2003 Hong Kong severe acute respiratory syndrome (SARS) outbreak, and the early 2020 UK COVID-19 epidemic. Our framework provides analytical tools to estimate epidemic uncertainty with limited data, to provide reasonable worst-case scenarios and assess both epistemic and aleatoric uncertainty in forecasting, and to retrospectively assess an epidemic and thereby provide a baseline risk estimate for future outbreaks. Our work strongly supports the precautionary principle in pandemic response.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.16.22276483

ABSTRACT

Background SARS-CoV-2 serologic surveys estimate the proportion of the population with antibodies against historical variants which nears 100% in many settings. New analytic approaches are required to exploit the full information in serosurvey data. Method Using a SARS-CoV-2 anti-Spike (S) protein chemiluminescent microparticle assay, we attained a semi-quantitative measurement of population IgG titres in serial cross-sectional monthly samples of routine blood donations across seven Brazilian state capitals (March 2021-November 2021). In an ecological analysis (unit of analysis: age-city-calendar month) we assessed the relative contributions of prior attack rate and vaccination to antibody titre in blood donors. We compared blood donor anti-S titre across the seven cities during the growth phase of the Delta variant of concern (VOC) and use this to predict the resulting age-standardized incidence of severe COVID-19 cases. Results On average we tested 780 samples per month in each location. Seroprevalence rose to >95% across all seven capitals by November 2021. Driven proximally by vaccination, mean antibody titre increased 16-fold over the study. The extent of prior natural infection shaped this process, with the greatest increases in antibody titres occurring in cities with the highest prior attack rates. Mean anti-S IgG was a strong predictor (adjusted R2 =0.89) of the number of severe cases caused by the Delta VOC in the seven cities. Conclusions Semi-quantitative anti-S antibody titres are informative about prior exposure and vaccination coverage and can inform on the potential impact of future SARS-CoV-2 variants. Summary In the face of near 100% SARS-CoV-2 seroprevalence, we show that average semi-quantitative anti-S titre predicted the extent of the Delta variant’s spread in Brazil. This is a valuable metric for future seroprevalence studies.


Subject(s)
COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.23.22275458

ABSTRACT

Covid-19 has caused more than 1 million deaths in the US, including at least 1,433 deaths among children and young people (CYP) aged 0-19 years. Deaths among US CYP are rare in general, and so we argue here that the mortality burden of Covid-19 in CYP is best understood in the context of all other causes of CYP death. Using publicly available data from the National Center for Health Statistics, and comparing to mortality in 2019, the immediate pre-pandemic period, we find that Covid-19 is a leading cause of death in CYP aged 0-19 years in the US, ranking #9 among all causes of deaths, #5 in disease related causes of deaths (excluding accidents, assault and suicide), and #1 in deaths caused by infectious / respiratory diseases. Due to the impact of mitigations such as social distancing and our comparison of a single disease (Covid-19) to groups of causes such as deaths from pneumonia and influenza, these rankings are likely conservative lower bounds. Our findings underscore the importance of continued vaccination campaigns for CYP over 5 years of age in the US and for effective Covid-19 vaccines for under 5 year olds.


Subject(s)
Respiratory Tract Diseases , Pneumonia , Death , COVID-19
9.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1363260.v1

ABSTRACT

There are large differences in the shape and size of regional SARS-CoV-2 epidemics in Brazil. Here we tested monthly blood donation samples for IgG antibodies from March 2020 to March 2021 in eight of Brazil’s most populous cities. There was large variation in the inferred attack rate adjusted for seroreversion across cities, and seroprevalence was consistently smaller in women and donors older than 55 years. The age-specific infection fatality rate differed between cities and consistently increased with age. The infection hospitalisation rate (IHR) increased significantly during the gamma-dominated second wave in Manaus, suggesting increased morbidity of the Gamma VOC compared to previous variants circulating in Manaus. The higher disease penetrance associated with the health system’s collapse increased the overall IFR by a minimum factor of 2.91 (95% CrI 2.43–3.53). These results demonstrate large heterogeneity in epidemic spread and highlight the utility of blood donor serosurveillance to monitor SARS-CoV-2 epidemics.


Subject(s)
COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.01.21265731

ABSTRACT

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma’s spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma’s detection, and were largely transient after Gamma’s detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil’s COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil’s COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. Note The following manuscript has appeared as ‘Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals’ at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . One sentence summary COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.21.21262393

ABSTRACT

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness. One-Sentence SummarySocioeconomic inequalities impacted the SARS-CoV-2 genomic surveillance, and undermined the global pandemic preparedness.

12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.23.21259405

ABSTRACT

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness.


Subject(s)
Severe Acute Respiratory Syndrome
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21259078

ABSTRACT

Background The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. Methods and Findings We develop a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care to explore the potential public-health impact of a range of different potential therapeutics, under a range of different scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) drug efficacy in the absence of supportive care. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. We find the impact of drugs like dexamethasone (which are delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics. Conclusions There is a global asymmetry in who is likely to benefit from advances in the treatment of COVID-19 to date, which have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.


Subject(s)
COVID-19
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.10.21258720

ABSTRACT

Background Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings. Methods Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings. Results Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, but low-income settings were characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made. Conclusions These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions. Funding This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).


Subject(s)
Communicable Diseases
15.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3817420

ABSTRACT

Background: The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of current and proposed treatments, and consequently research and procurement priorities, have not been clear. Methods: First, we used a model of SARS-CoV-2 transmission, COVID-19 disease and clinical care pathways to explore the potential impact of dexamethasone - the main treatment currently for hospitalised COVID-19 patients - under scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) the efficacy of dexamethasone in the absence of supportive care. We then fit the model to the observed epidemic trajectory to-date in 165 countries and analysed the potential future impact of dexamethasone in different countries, regions, and country-income strata. Finally, we constructed hypothetical profiles of novel therapeutics based on current trials, and compared the potential impact of each under different circumstances. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. Findings: We find the potential benefit dexamethasone is severely limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). However, therapeutics for different patient populations (in particular, those not in hospital and early in the course of infection) and types of benefit (in particular, reducing disease severity or infectiousness) could have much greater benefits. Such therapeutics would have particular value in resource-poor settings facing large epidemics, even if the efficacy or achievable coverage of such therapeutics is lower in comparison to other types. Interpretation: People in low-income countries will benefit the least from advances in the treatment of COVID-19 to date, which have focussed on hospitalised-patients with adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have much greater impact. Such therapeutics may be feasible and research into their efficacy and means of delivery should be a priority. Funding: None to declare. Declaration of Interest: None to declare.


Subject(s)
COVID-19
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21253960

ABSTRACT

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning. HighlightsO_LIThe global dose supply of COVID-19 vaccines will be constrained in 2021 C_LIO_LIWithin a country, prioritising doses to protect those at highest mortality risk is efficient C_LIO_LIFor a 2 billion dose supply in 2021, allocating to countries according to population size is efficient and equitable C_LI


Subject(s)
COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.26.21252554

ABSTRACT

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4–2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence Summary We report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.


Subject(s)
COVID-19
18.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2102.11249v2

ABSTRACT

Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing, with prominent examples in a wide range of fields. An important example of this problem is the nowcasting of COVID-19 mortality: given a stream of reported counts of daily deaths, can we correct for the delays in reporting to paint an accurate picture of the present, with uncertainty? Without this correction, raw data will often mislead by suggesting an improving situation. We present a flexible approach using a latent Gaussian process that is capable of describing the changing auto-correlation structure present in the reporting time-delay surface. This approach also yields robust estimates of uncertainty for the estimated nowcasted numbers of deaths. We test assumptions in model specification such as the choice of kernel or hyper priors, and evaluate model performance on a challenging real dataset from Brazil. Our experiments show that Gaussian process nowcasting performs favourably against both comparable methods, and against a small sample of expert human predictions. Our approach has substantial practical utility in disease modelling -- by applying our approach to COVID-19 mortality data from Brazil, where reporting delays are large, we can make informative predictions on important epidemiological quantities such as the current effective reproduction number.


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.02.20198663

ABSTRACT

Measuring COVID-19 spread remains challenging in many countries due to testing limitations. In Java, reported cases and deaths increased throughout 2020 despite intensive control measures, particularly within Jakarta and during Ramadan. However, underlying trends are likely obscured by variations in case ascertainment. COVID-19 protocol funerals in Jakarta provide alternative data indicating a substantially higher burden than observed within confirmed deaths. Transmission estimates using this metric follow mobility trends, suggesting earlier and more sustained intervention impact than observed in routine data. Modelling suggests interventions have lessened spread to rural, older communities with weaker healthcare systems, though predict healthcare capacity will soon be exceeded in much of Java without further control. Our results highlight the important role syndrome-based measures of mortality can play in understanding COVID-19 transmission and burden.


Subject(s)
COVID-19
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.16.20194787

ABSTRACT

The herd immunity threshold is the proportion of a population that must be immune to an infectious disease, either by natural infection or vaccination such that, in the absence of additional preventative measures, new cases decline and the effective reproduction number falls below unity. This fundamental epidemiological parameter is still unknown for the recently-emerged COVID-19, and mathematical models have predicted very divergent results. Population studies using antibody testing to infer total cumulative infections can provide empirical evidence of the level of population immunity in severely affected areas. Here we show that the transmission of SARS-CoV-2 in Manaus, located in the Brazilian Amazon, increased quickly during March and April and declined more slowly from May to September. In June, one month following the epidemic peak, 44% of the population was seropositive for SARS-CoV-2, equating to a cumulative incidence of 52%, after correcting for the false-negative rate of the antibody test. The seroprevalence fell in July and August due to antibody waning. After correcting for this, we estimate a final epidemic size of 66%. Although non-pharmaceutical interventions, plus a change in population behavior, may have helped to limit SARS-CoV-2 transmission in Manaus, the unusually high infection rate suggests that herd immunity played a significant role in determining the size of the epidemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL